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Abstract. The semiclassical Weyl series for thed-dimension, unit-radius sphere quantum billiard
is studied. A conjecture of Berry and Howls (1994Proc. R. Soc.447527–55) on the late terms
of such series for two-dimensional billiards is seen to survive for general (integer) dimension. The
conjecture postulates a leading-order, factorial-on-power approximation for the late terms of the
Weyl series in terms of the length of a periodic orbit of the classical system. The expansions manifest
a difference between odd and even dimensions. The dominating orbit is the diametral, length-4
path in the even-dimension spheres, echoing the known result for the circle billiard. However, when
d is odd, it is the next-longest orbit. This surprise can be traced to an ‘accidental’ symmetry in a
postulated hyperasymptotic remainder term. Higher-order asymptotic correction terms are found
confirming the resurgent link of the Weyl series to the low orders of the oscillatory periodic orbit
corrections. From the structure of the latter, it is possible to make further conjectures on the late
terms of the periodic orbit corrections themselves. A factorial-on-power behaviour is also found, but
now involving the differences betweenp-bounce orbits and associated whispering-gallery modes.

1. Introduction

Over the past three decades, the asymptotic expansions of smoothed spectral functions
associated with Schrödinger equations withind-dimensional balls have received aperiodic
attention (Stewartson and Waechter 1971, Waechter 1972, Kennedy 1978, 1979, Berry and
Howls 1994, Bordaget al1996a, b, c, Levitin 1998). Recently Bordaget al (1996a, b, c) have
described an analytic technique which combines the explicit form of the known eigenfunctions
with contour integral techniques to generate high-energy expansions of thed-balls’ spectralζ -
functions. Ford-dimensional balls the eigenfunctions are simply Bessel functions, and hence
Dirichlet, Neumann and Robin boundary data have all been dealt with (e.g., Dowker 1996).
The limit on the number of terms which can be derived is now only the size of the computer
memory available. Dowkeret al (1996) and Elizaldeet al (1993) have performed similar
calculations for spinors and other equations within ball domains. Levitin (1998) has provided
relations which generate coefficients of spectral expansions for balls in several dimensions
simultaneously.

Beyond calculating the terms in the asymptotics Weyl series, an understanding of their
structure seems desirable. Berry and Howls (1994, hereafter called BH) considered the late
terms in the high-energy expansion of the regularized resolvent within a circular domain with
Dirichlet boundaries

g(s) ≡ lim
N→∞

[ N∑
n=1

1

En + s2
− A

4π
ln

(
EN

s2

)]
. (1)
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The resolvent has been defined here in terms of a complex energy variables = −i
√
E so that

corrections arising from periodic orbitslj are exponentially small in the region where the Weyl
series is initially analysed. In a sector surrounding the Im(s) > 0 axis, the larges expansion is

g(s) ∼
∞∑
r=1

cr

sr
+
∑
j

e−slj
∞∑
r=1

c
(j)
r

sr
. (2)

BH conjectured that thecr behaved asymptotically as

cr ∼ α(r + β)!

lr
(3)

wherel is anassociated(not necessarilyactual) periodic orbit of the billiard,β a constant
determined by the character of the orbit andα is intimately related to the first term of the
oscillatory periodic orbit correction pertaining tol, e.g., possibly one of thec(j)0 . They provided
numerical evidence for the result, via a Borel sum of the conjectured later terms. Howls and
Trasler (1998, hereafter called HT) extended the conjecture in the case of 2D cake-slice orbits
with Dirichlet conditions demonstrating analytically and numerically a higher-order version
of the asymptotic form

cr ∼
∑
j

∞∑
k=0

α
(j)

k (r + βj − k)!
lr−kj

(4)

where the{lj } are all associated periodic orbits. (Note that the indexj is for identification
purposes only and does not necessarily label the number of bounces the orbitlj makes on the
boundary.) In this paper we analyse the late terms ofd-balls with Dirichlet boundary data
(other conditions will be considered elsewhere). The results bear out the extended conjecture
of HT, but with an important qualification. It is known that the shortest orbit may not dominate
the Weyl series inconcavebilliards (BH) or in billiards with corners (HT). However, we
shall demonstrate that this phenomenon can also occur inconvexC∞ cavities, specifically
odd-dimensional balls. The reasons underlying this surprise are explained.

In section 2 we outline the algorithm to generate the coefficients in any (integer) dimension.
In section 3 the leading-order behaviour and corrections to the late terms behaviour are explored
numerically. In section 4 these estimates are justified analytically. The resurgence relationship
between thecr and that of the periodic orbit coefficients(c(j)r ) is highlighted. In section 5 we
explain the absence of influence of the shortest orbit on the odd-dimensional Weyl terms. The
results of the first part of the paper allow us to make conjectures about high orders of the
periodic orbit correctionsc(j)r in section 6. We conclude with a discussion in section 7.

2. Algorithm for generating d-ball coefficients

Many authors have considered the problem of generating coefficients in the Weyl expansion
for d-dimensional balls. Stewartson and Waechter (1971) provided a method for Dirichlet
conditions ind = 2. Waechter (1972) extended this tod = 3, but neglected an important
exponential contribution which was picked up by Kennedy (1979). Bordaget al (1996a, b, c)
provided an alternative general method for generating the coefficients for billiards subject to
general boundary data, provided however that the exact eigenfunction expansions are known.
This integral technique automatically accounts for Waechter’s overlooked exponentials.
Levitin’s method (1998) is based on relations between balls of different dimensions and claims
computational efficiency.

Here we will follow the approach of Kennedy (1979). Apart from defining the relevant
quantities, the inclusion of this calculation can be justified for several reasons. First, even
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the most recent publications (e.g., Brack and Bhaduri 1997) propagate Waechter’s (1972)
mistake. Secondly, the Kennedy formalism currently lends itself more immediately to the
resurgence of the periodic orbit contributions in the late termscr . Thirdly, because the inclusion
of oscillatory terms to generate algebraic coefficients is a salutary lesson for semiclassical
expanders, especially as we are dealing here withC∞ boundaries. The method for generating
d = 2 Weyl coefficients with Dirichlet boundary data has been outlined in BH.

In general-d, the regularized resolvent for a quantum billiard� is defined in terms of the
full and free Green functionsG andG0, respectively, as

g(s) =
∫
�

dr lim
r0→r

[G(r, r0; s)−G0(r, r0; s)]. (5)

Thus we need to solve

(−∇2 + s2)G(r, r0; s) = δ(r − r0) r, r0 ∈ � (6)

where� is ad-dimensional ball of unit radius. The Green function is decomposed as

G(r, r0; s) = G0(r, r0; s) + χ(r, r0; s) (7)

whereχ is the compensating function appropriate to the boundary data.
We shall find it convenient to define

ν = d

2
− 1 (8)

so thatν is (half-) integer in (odd) even dimensions. In arbitrary-d, the free Green function
can be written in spherical geometries as (Balian and Bloch 1972)

G0(r, r0; s) = s2ν

(2π)ν+1(sR)ν
Kν(sR) R = |r − r0| (9)

which ford > 3 may be expanded thus:

Kν(sR)

(sR)ν
= 2ν(ν − 1)!

∞∑
m=0

(m + ν)
Im+ν(sr<)

(sr<)ν

Km+ν(sr>)

(sr>)ν
C(ν)m (cosθ) (10)

whereθ is the angle subtended by the vectorr − r0 at the origin,r = |r|, r0 = |r0|,
r< = min(r, r0) and r> = max(r, r0). The presence of the Gegenbauer polynomialsC(ν)m
naturally accounts for the eigenvalue degeneracies asr0→ r in (5).

2.1. Coefficients ford > 3, Dirichlet data

Using the expansion (10) for the free Green function, when� is a unitd-ball the boundary
data is satisfied by the compensating function

χ = − (ν − 1)!

2πν+1

∞∑
m=0

(m + ν)
Im+ν(s)

Km+ν(s)

Im+ν(sr<)Im+ν(sr>)

rν<r
ν
>

C(ν)m (cosθ).

Thus, on taking the limits in the resolvent:

lim
r0→r

χ = − (ν − 1)!

2πν+1

∞∑
m=0

(m + ν)
Im+ν(s)

Km+ν(s)

I 2
m+ν(sr)

r2ν
C(ν)m (1) (11)

and so we obtain an expression for the resolvent

g(s) = − (ν − 1)!

2πν+1

∞∑
m=0

(m + ν)(m + 2ν − 1)!

m!(2ν − 1)!

Km+ν(s)

Im+ν(s)

∫
�

dV
I 2
m+ν(sr)

r2ν
. (12)
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Using the relevant spherical polar Jacobian and performing the angular integrations we arrive
at

g(s) = −1

ν

∞∑
m=0

(m + ν)(m + 2ν − 1)!

m!(2ν − 1)!

Km+ν(s)

Im+ν(s)

∫ 1

0
dr rI 2

m+ν(sr) (13)

= −
∞∑
m=0

(m + ν)(m + 2ν − 1)!

m!(2ν)!
fm+ν(s) (14)

where thefm is defined as

fm(s) =
(

1 +
m2

s2

)
Im(s)Km(s)− I ′m(s)K ′m(s)−

I ′m(s)
sIm(s)

. (15)

Note the similarity with the result (54) of BH ford = 2, but with the important difference in
the range of summation.

We now sum the series in (13) by using the half-range Poisson sum formula
∞∑
m=0

hm+ν(s) =
∞∑

µ=−∞
(−)2µν

∫ ∞
0

dmhm(s)e
2π imµ (16)

generating the integral expression

g(s) = − 1

(2ν)!

∞∑
µ=−∞

(−)2µν
∫ ∞

0
dm

m(m + ν − 1)!

(m− ν)! fm(s)e
2π imµ. (17)

The factorials simplify whend is integer revealing the appropriate degeneracies of the
eigenvalues and the integrands become

mfm(s)e
2π imµ

ν−1/2∏
n=1

(m2 − (n− 1
2)

2) d odd (18)

m2fm(s)e
2π imµ

ν−1∏
n=1

(m2 − n2) d even. (19)

From these results it is clear that thed-ball’s resolvent can be expressed in terms of the
(d − 2)-, (d − 4)-, . . . balls’, via an expansion of the products in (18), (19). Without loss of
generality we can now focus on the integrand with the highest power ofm:

Lν(s) = − 1

(2ν)!

∞∑
µ=−∞

(−)2µν
∫ ∞

0
dmm2νfm(s)e

2π imµ. (20)

Denoting byWd the Weyl series for thed-ball, we can determine odd-dimensionald-Weyl
series as

W6 = L2(s)− 1
12W4

W8 = L3(s)− 1
360W4 − 1

6W6
(21)

while that for the even case is

W5 = L3/2(s)− 1
24W3

W7 = L5/2(s)− 1
1920W3− 1

8W5

W9 = L7/2(s)− 1
322 560W3− 13

1920W5− 5
24W7

(22)

and so on.
Thus there are only two analytically different base cases, namelyL1/2 andL1, all higher-

dimensional coefficients being generated from these. In recognizing (20)–(22) we see that,
assuming that the lower-dimensional coefficients have been generated, the additional effort
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required to calculate in a higher dimension is constant. Moreover, because of the analytic
basesW3 andW4, it will transpire that it is possible to make detailed asymptotic statements
about the form of coefficients in any dimension (cf Levitin 1998).

It is now necessary to split our treatment into consideration of even and odd dimensions.
To that end we separate the large-s expansion of (20) into two parts, and consider thecr to be
defined as

cr = zr + hr (23)

whereµ = 0 andµ 6= 0 respectively.

2.2. The zeroth harmonic

Settingµ = 0 in (20) we expand the resulting integral using the Debye expansions of the
Bessel functions (BH 55) and changing the variablem = xs we observe that

zr = 1

(d − 2)!

∫ ∞
0

dx

√
1 +x2

xr
Br+d−2

(
x√

1 +x2

)
(24)

where the{Br} are given by BH (58). The integrals are straightforward to evaluate: each
integrand reduces to the form (BH 57)

r+2ν−1∑
k=0

qr,2k+2νx
2k+2ν

(1 +x2)3r/2+3ν−1/2
(25)

for constantsqr,2k+2ν and are thus effectively the same as those in BH. Note that theImKm
andI ′mK

′
m coefficients do not contribute beyondc2, thus simplifying the computational effort

required (HT). The calculation (24) is common to both even and odd dimensions.

2.3. The higher harmonics

Theµ 6= 0 calculation can be written in terms of two Fourier transforms.

L(µ6=0)
ν (s) = − 1

(2ν)!

∞∑
µ=1

(−)2µν
∫ ∞

0
dmm2νfm(s)(e

2π imµ + e−2π imµ). (26)

For the large-s expansion we use the asymptotics of Fourier integrals with continuous
derivatives on the real axis (Olver 1997)∫ ∞

0
dx eiσxf (x) ∼

∞∑
n=1

(
i

σ

)n
f (n−1)(0) s � 1. (27)

Consideration of the form of the integrands (25) shows that after appropriate cancellations (26)
can be expanded as

L(µ6=0)
ν (s) ∼ 1

(2ν)!

∞∑
r=1−2ν

r+2ν−1∑
k=0

∞∑
n=1

qr,2k+2ν

sr+2n
(∂2n−1
x X

(r)
k,ν)x=0

2(−)n+1

(2π)2n
Z(2n) (28)

where

X
(r)
k,ν =

x2(κ+ν)

(1 +x2)
3r
2 +3ν+ 1

2

(29)

and (Abramowitz and Stegun 1972 section 23.2)

Z(2n) = ζ(2n)×
{
(1− 21−2n) ν integer-plus-half

1 ν integer
(30)
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in terms of the Riemannζ -function. SinceX(r)k,ν is even for 2ν = even, i.e.d = even, clearly
its odd derivatives at the origin are zero. Thus there are no contributions to the algebraic Weyl
series from higher harmonic in even-d balls.

In odd-d balls the odd derivatives of the oddX(r)k,ν are non-zero. Thus the oscillatory higher
harmonics may not be neglected and generate an algebraic contribution to the Weyl series. A
short but messy calculation gives

L(µ6=0)
ν (s) ∼

∞∑
r=2

hr

sr

hr = −2

(2ν)!

b(r−2)/3c∑
k=0

b(r−k)/2c+ν− 1
2∑

n=k+ν+ 1
2

(−)k+ν+ 1
2qr−2n,2k+2ν

× (3r/2− 2n + 2ν − k − 2)!(2n− 1)!

(3r/2− 3n + 3ν − 3/2)!(n− k − ν − 1/2)!

Z(2n)

(2π)2n

(31)

for d odd (hr = 0 for d even).
Waechter’s (1972) oversight was to neglect the overall algebraichr for d = 3. Ford odd,

numerically thehr are of comparable size to thezr and their interaction is essential to the final
asymptotic form of the coefficients. This point contradicts the often assumed smallness of
higher harmonics in Poisson summations, especially inC∞ boundaries.

3. Fits to the late terms

The Weyl coefficients for arbitrary-dimensional balls can now be calculated symbolically from
equations (23), (24) and (31), at least up to the limits of computer memory. A selection of the
coefficients up tod = 9 is displayed in table 1. The results of this method agree with those of
Bordaget al (1996a) and Levitin (1998), after appropriate scaling factors have been accounted
for.

Having computed these figures, we follow BH and HT and examine the late-term
behaviour. If ourcr do indeed fit the form of the conjecture (3), then we should be able
to estimate values for the constants. Assuming the result holds, then

τ(r) ≡ crcr−2

c2
r−1

∼ r + β

r + β − 1
⇒ β = τ

τ − 1
− r + O

(
1

r

)
.

Hence we use the function

B(r) = τ

τ − 1
− r (32)

to find the value forβ in each dimension. The dominant periodic orbit can then be deduced
from considering the slope of the function

L(r) = ln

∣∣∣∣ cr

(r + β)!

∣∣∣∣ ∼ r ln l − ln |α| (33)

plotted againstr. Finally, estimates ofα are obtained by plotting

A(r) = lrcr

(r + β)!
∼ α. (34)

The graphs produced are shown in figures 1–3 and include further data fromd = 2. These
estimates are confirmed analytically below, and the superposed lines correspond to those
predictions.

The results are surprising. The orbit dominating the late terms of the Weyl series of even-d

balls, as in the circle, is found to be the shortest periodic path, with length 4. However, this
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Table 1. The first ten coefficientscr in the Weyl series for the Dirichlet sphere billiards in 3–9
dimensions.

d = 3 d = 4 d = 5 d = 6

r = 1 1
3 − 11π

512 − 4
945

2159π
1572 864

r = 2 − 1
48 − 1

180
17

11 520
1

1512

r = 3 − 1
315 − 35π

131 072
19

45 045
1685π

50 331 648

r = 4 − 1
960 − 29

45 045
157

967 680
571

6235 515

r = 5 − 2
3003 − 911π

4194 304
1838

14 549 535
3512 407π

103 079 215 104

r = 6 − 47
80 640 − 13 432

14 549 535
5

39 424
4988

31 702 671

r = 7 − 3169
4849 845 − 4136 575π

8 589 934 592
3044

18 706 545
582 966 649π

6597 069 766 656

r = 8 − 521
591 360 − 2911 072

1003 917 915
593

2396 160
7712 057 536

13 537 833 083 775

r = 9 − 198 641
143 416 845 − 1110 131 911π

549 755 813 888
179 214 739

410 237 366 175
238 135 098 481π

562 949 953 421 312

r = 10 − 9521
3843 840 − 10 032 272 896

644 658 718 275
32 815 499

37 638 881 280
247 981 260 544

71 557 117 728 525

d = 7 d = 8 d = 9

r = 1 349
675 675 − 260 699π

1509 949 440 − 11 108
138 881 925

r = 2 − 367
1935 360 − 23

226 800
27 859

928 972 800

r = 3 − 1627
24 249 225 − 16 169 407π

3092 376 453 120
535 004

45 176 306 175

r = 4 − 23 413
851 558 400 − 1374 409

90 352 612 350
28 291

5635 768 320

r = 5 − 51 109
2151 252 675 − 1181 500 627π

197 912 092 999 680
386 811 188

83 616 027 870 375

r = 6 − 188 963
7380 172 800 − 345 483 706

11 945 146 838 625
65 826 419

12 646 664 110 080

r = 7 − 367 267
10 342 118 475 − 57 386 081 761π

3377 699 720 527 872
8880 814 633

1168 766 256 232 575

r = 8 − 87 132 679
1505 555 251 200 − 858 884 026 976

7513 497 361 495 125
655 336 327

50 586 656 440 320

r = 9 − 91 432 492 744
834 833 040 166 125− 191 235 186 442 949π

2161 727 821 137 838 080
113 473 229 730 632

4415 431 949 438 635 125

r = 10 − 114 193
488 816 640 − 79 950 804 764 800

105 970 366 786 527 243
2113 097 393 809

36 843 948 107 366 400

is not the case in odd dimensions. Instead, it is the next-longest orbit with three bounces. In
general,

l =
{

4 d even

3
√

3 d odd.
(35)

We tackle the question of why this should be so below. The corresponding values forβ are
found to follow the pattern

β =

d − 5

2
d even

d − 7
2 d odd.

(36)

The estimates forα are consistent with the formulae (confirmed analytically below)

α =


−27/2−3d/2id

π(d − 2)!

(
d − 3

2

)
! d even

21/2−d34−3d/2i3d+1

√
π(d − 2)!

d odd.
(37)

Due to the large number of coefficients that can be generated it is possible to test the
extended conjecture (4) of HT by the use of a Neville table (Voros 1983 appendix B, HT
appendix C). The estimates for the higher-order coefficientsα

(j)

k for d = 2–4 are displayed in
tables 2–4.
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Figure 1. PlottingB(r) versusr to estimateβ in the conjecture (3) for the Dirichletd-spheres with
Dirichlet boundary conditions. Lines are drawn in for the predicted values (36).

Table 2. Neville table for the coefficientsα(2)i in the expansion (4) for the circle billiard. The
indexp denotes the iteration of the Neville algorithm. The corresponding analytic predictions of
section 4 are displayed at the bottom of the table.

p α0 α1 α2 α3

1 0.776 325 0675−0.530 899 5137−0.178 062 5806−0.372 128 2247
2 0.798 218 5879−0.522 838 1627−0.160 007 8416−0.310 000 7395
3 0.797 846 9566−0.523 723 6769−0.163 030 1067−0.319 078 0005
4 0.797 891 1460−0.523 568 5682−0.162 439 6126−0.314 599 0688
5 0.797 882 5689−0.523 610 8705−0.162 808 5390−0.318 381 6141
6 0.797 885 5371−0.523 586 5667−0.162 637 5765
7 0.797 884 0772−0.523 594 3822
8 0.797 884 4386

0.797 884 5608−0.523 611 7430−0.161 680 7093−0.341 854 8673
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Figure 2. PlottingL(r) versusr to estimatel in the conjecture (3) for the Dirichletd-spheres. Lines
of slope corresponding to the predicted lengths (35) are superimposed to highlight the agreement.
Note the scales on the vertical axes are the same for comparison between even and odd dimensions.

Table 3. As above, but for the coefficientsα(3)i in the expansion (4) for the sphere billiard.

p α0 α1 α2 α3

1 −0.052 014 7449 0.109 712 8339 0.146 597 4253 6.768 357 7178
2 −0.057 997 7481 0.104 956 0081 0.378 559 3287 9.134 653 3181
3 −0.057 449 8351 0.110 366 8426 0.507 309 4084
4 −0.057 350 8081 0.117 446 2610
5 −0.057 744 2385

−0.057 582 3583 0.101 736 4380 0.058 154 8166 0.347 315 0204
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Figure 3. PlottingA(r) versusr to estimateα in the conjecture (3) for the Dirichletd-spheres with
Dirichlet boundary conditions. The lines show the predicted values (37).

Table 4. As above, but for the coefficientsα(2)i in the expansion (4) for the 4-sphere billiard.

p α0 α1 α2 α3

1 −0.023 875 4236 0.026 334 4156 0.014 640 9996 0.052 701 9733
2 −0.024 961 7704 0.025 659 7937 0.012 709 4661 0.058 207 5182
3 −0.024 930 6420 0.025 742 2008 0.012 764 8315 0.064 891 9308
4 −0.024 934 7229 0.025 727 4912 0.012 478 8673
5 −0.024 933 5530 0.025 739 8572
6 −0.024 934 0936

−0.024 933 8925 0.025 713 0767 0.013 915 7418 0.025 778 1355

4. Analytic justification of HT conjecture

In BH, the analytical justifications forα, β, l whend = 2, were derived from a comparison of
a Borel sum of the assumed approximate form (3) ofcr with a first-order asymptotic study of
the exponentials generated by the Stokes phenomenon offm(s) (15). In HT, the conjecture (4)
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was tested by expanding the high ordercr directly. Here we carry out a more complete analysis
of the Stokes phenomenon affectingfm(s) which is responsible for generating the oscillatory
periodic orbit corrections on the imaginarys (real energy) line. We compare the results with
the Borel sum of the more detailed late-term conjecture (4) to identify theα

(j)

k (j > 0) and
link the early terms of the periodic orbit expansionc(j)r with the late Weylcr . To ensure that
all the relevant exponentials have fully switched on we shall work with real energiesk = is.

First, the assumed extended late-term form (4) for thecr is inserted in the Weyl expansion
and Borel-summed (Berry 1989). As the summed quantities undergo Stokes phenomena ass

rotates to its imaginary axis (realk) (Berry and Howls 1991) the exponentials generated for
eachlj take the form (cf BH (7))

g
(exp)
Borel(s) ∼ iπ(−iklj )

βj+1eiklj

(
α
(j)

0 +
iα(j)1

k
− α

(j)

2

k2
+ · · ·

)
. (38)

This result is the basis for the comparison with the periodic orbit contributions which we now
calculate.

From BH, all the relevant oscillatory periodic orbit contributions come from the ratio of
Bessel functions infm alone. Denoting this byφm, for realk (imaginarys) we have the identity

φm(k) = − J
′
m(k)

kJm(k)
= −1

k

H 1
m

′
(k) +H 2

m

′
(k)

H 1
m(k) +H 2

m(k)
. (39)

We choose to take out the Hankel functions of the second kind (the reason is explained below)
from the top and bottom and write this as

φm(k) = −A1

k

1 +A2e2iψ

1 +A3e2iψ
(40)

A1 = H 2
m

′
(k)

H 2
m(k)

A2 = e−2iψ H
1
m

′
(k)

H 2
m
′
(k)

A3 = e−2iψ H
1
m(k)

H 2
m(k)

(41)

where the functionψ is defined as

ψ(k,m) =
√
k2 −m2 − im ln

(
k

m + i
√
k2 −m2

)
− π

4
. (42)

The large-order, large-argument Debye asymptotic expansions of the Hankel functions can be
found in Abramowitz and Stegun (1972 section 9.3). The exponential behaviour in each of the
Hankel functions is made explicit in the definitions (41) and theAj are then asymptotically
purely algebraic. The explicit factor e2iψ in (40) is extracted since it will ultimately generate
the required periodic orbit lengths. The analysis of BH corresponds to replacing theAj by
their lowest-order Debye approximations.

A formal binomial expansion of (40) generates

φm(k) = −A1

k
− A1

k

∞∑
p=1

(−)pAp3e2iψp

{
1− A2

A3

}
. (43)

The contents of the braces multiplied byA1 simplify by identifying the numerator of

A1

{
1− A2

A3

}
= H 1

m(k)H
2
m

′
(k)−H 1

m

′
(k)H 1

m(k)

kH 1
m(k)H

2
m(k)

(44)

as precisely the Wronskian

W(H 1
m(k),H

2
m(k)) = −

4i

πk
. (45)
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Ignoring the algebraic (Weyl) parts of (43), the exponential contribution from the leading-
order part of them-products (18)–(20) to the resolvent is found to be

L(exp)
ν (−ik) ∼ − i

(2ν)!

∞∑
µ=−∞

(−)2µν
∞∑
p=1

(−)p
∫ ∞

0
dmm2ν

√
k2 −m2

k2

×
( ∞∑
j=0

(−)juj (t)
mj

)p−1( ∞∑
j=0

uj (t)

mj

)−(p+1)

e2iψp+2π imµ (46)

wheret = m(m2 − k2)−1/2 and the functionsuj (t) are defined by the recurrence relation
(Abramowitz and Stegun 1972 section 9.3),

uk+1(t) = t2(1− t2)
2

u′k(t) +
1

8

∫ t

0
dτ (1− 5τ 2)uk(τ )

u0 = 1.
(47)

Formally expanding the integrand to the first few (inverse) powers ofm,

L(exp)
ν (−ik) = − i

(2ν)!

∞∑
µ=−∞

(−)2µν
∞∑
p=1

(−)p
∫ ∞

0
dmm2ν

√
k2 −m2

k2

×
{

1− 2pu1(t)

m
+
(1 + 2p2)u2

1(t)− 2u2(t)

m2

−2p

3

2(p2 + 2)u3
1(t)− 9u1(t)u2(t) + 3u3(t)

m3
+ · · ·

}
e2iψp+2π imµ. (48)

These integrals are evaluated by the method of steepest descent (Dingle 1973). The saddles
m0 lie at

m0 = k cos
πµ

p
. (49)

Thus thep = 2µ saddles coincide with the integration endpointm = 0 and so have to be
treated separately from the rest. This segregation does not occur in two dimensions because
the integrals are all doubly infinite (BH).

4.1. Odd dimensions:p > 2µ contributions

First we concentrate on odd dimensions where the late terms of the Weyl series are dominated
by thep > 2µ orbits. Contributions to each order ofk arise from several sources and care
is needed to include them all. Take the example of the 7-sphere. In terms of theLν , the
contributions to the resolvent arise from (cf equation (22))

W7 = L5/2(s)− 1
1920W3− 1

8W5 (50)

= L5/2(s)− 1
8L3/2(s) + 3

640L1/2(s). (51)

Every component of the braces in eachLν (cf equation (48)) generates a series in increasing
powers ofk−1 with the same exponential periodic orbit prefactor: if the series expansion
corresponding to the first term in the braces of (48) starts at O(k−r ), that of the second will
start at O(k−r−1) and so on. In addition, if the expansion forLν starts at O(k−n), that forLν−1

will start at O(k−n−2).
Expanding the integrals up to the relevant higher orders ink using, for example, Dingle

(1973 pp 135, 118), we find (forp > 3)

L(exp)
ν (k) = − 1

(2ν)!

∞∑
µ=−∞

∞∑
p=3

(−)2µν ip+3/2eikly3/2x2νk2ν−1/2
√
π

p

∞∑
r=0

Tr (52)
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T0 = 1 (53)

T1 = − i(24ν(1− 2ν) + 3x2(5 + 4p2 + 8ν + 32ν2)− x4(11− 8p2 + 48ν + 48ν2))

48kpy2x2
(54)

T2 = − 1

4608k2p2y6x4
[48νx2(1− 2ν)(107 + 12p2 − 152ν + 96ν2)

−576ν(3− 11ν + 12ν2 − 4ν3)− 3x4(61− 48p2 + 1920ν − 5344ν2

+5376ν3− 4608ν4 + 8p2(61 + 168ν − 64ν2))− 6x6(63− 32p4 − 408ν

+784ν2 − 384ν3 + 1536ν4 + 4p2(173− 144ν − 16ν2))

−x8(1 + 64p4 − 96ν − 96ν2 + 1536ν3 + 2304ν4 + 16p2(1− 48ν2))] (55)

T3 = − i

3317 760k3p3y9x6
[8640νx2(367 + 12p2 − 328ν + 96ν2)(3− 11ν + 12ν2 − 4ν3)

−69 120ν(30− 137ν + 225ν2 − 170ν3 + 60ν4 − 8ν5)

+1080νx4(2ν − 1)(15 987 + 48p4 − 40 936ν + 39 600ν2 − 18 560ν3

+3840ν4 + 8p2(111− 320ν + 80ν2))

−45x6(3351 + 192p6− 328 840ν + 1589 760ν2 − 2634 752ν3 + 2204 160ν4

−1044 480ν5 + 245 760ν6 + 48p4(63− 360ν + 32ν2)

+4p2(11 793 + 35 584ν + 76 128ν2 − 60 160ν3 + 7680ν4))

+9x8(123 843 + 1920p6 + 812 360ν − 3668 000ν2 + 5821 440ν3

−5107 200ν4 + 2918 400ν5− 921 600ν6 + 16p4(15 927 + 1040ν + 880ν2)

+80p2(22 683 + 5140ν − 24 712ν2 + 10 560ν3))

−9x10(37 489 + 1280p6− 261 880ν + 698 560ν2 − 956 160ν3 + 902 400ν4

−768 000ν5 + 368 640ν6 + 128p4(837 + 460ν − 40ν2)

+20p2(30 957 + 59 744ν + 41 696ν2 − 7680ν3− 3840ν4))

+x12(1183− 2560p6− 16 560ν − 16 560ν2 + 253 440ν3− 172 800ν4

−552 960ν5 + 552 960ν6 + 192p4(151− 240ν + 240ν2)

+120p2(23− 1056ν2 + 3072ν3− 2304ν4))] (56)

where

y = sin
πµ

p
l = 2py x = cos

πµ

p
=
√

1−
(
l

2p

)2

. (57)

This gives the leading-order term and just the first three corrections! However this
expansion, when used in conjunction with expressions of the form (50) is actually sufficient to
generate the first four termsc(j)r (r = 0–3), corresponding to the orbit of choice (p > 3> 2µ)
for any sphere withd > 3 (regardless of dimensional parity).

Focus now on the contributions (52)–(56) specific to the 3-bounce orbit, of interest in odd
dimensions. They are found by settingp = 3, µ = 1 andl = 3

√
3. The values ofy andx

follow and

L(exp)
ν (k)|(3,1) = − (−)

2νeiklk2ν−1/2
√
π i
√

3

(2ν)!22ν+3/2

∞∑
r=0

Tr

T0 = 1 (58)

T1 = − i

3323k
√

3
(553 + 432ν − 432ν2) (59)
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T2 = 1

3727k2
√

3
(110 567 + 320 544ν − 299 808ν2 + 787 968ν3− 186 624ν4) (60)

T3 = i

311221k3
√

3
(1686 372 121 + 584 943 120ν − 1353 896 208ν2 + 2947 788 288ν3

−2189 659 392ν4 + 779 341 824ν5− 80 621 568ν6) (61)

for this family of orbits.
Observing the overall algebraic prefactor is proportional tok2ν−1/2 = kd−2, from these

coefficients and by comparison with (38) we see that the value ofβ can be confirmed asd− 7
2.

This result can be checked by comparison with the work of Balian and Bloch (1972). They
predict (HT 56) an algebraic prefactor ofkq0/2−1 for a contribution to the exponential part of
the resolvent of aC∞ billiard from a periodic orbit of degeneracyq0. The value ofβ here
givesq0 = 2d − 3, the correct degeneracy of a 3-bounce orbit in ad-ball.

Only the first term in the braces of the specificLν in (48) is required to find the leading-
order late-term Weyl behaviour in any odd dimensiond > 2. By comparison with (38), it is
found to be (cf (37))

α
(3)
0 =

21/2−d34−3d/2i3d+1

√
π(d − 2)!

(62)

andl = 3
√

3. This result agrees with the numerical prediction for odd dimensions in section 3.
Further comparison with (38) reveals the next three corrections. In three dimensions, these are

α
(3)
0 = −

1

4
√

6π
α
(3)
1 =

661

2592
√

2π

α
(3)
2 =

282 719

1119 744
√

6π
α
(3)
3 =

1895 084 173

2176 782 336
√

2π
.

(63)

Knowing the coefficients in the expansion (22), analytic predictions for theα
(j)
r , r > 0 could

be found in any odd dimension.

4.2. Even dimensions:p = 2µ contributions

Now we examine the coefficients for the 2-bounce (or more generally thep = 2µ) orbit
expansion. Since the corresponding integralsLν contain quadratic endpoints the series
expansion should be in powers ofk−1/2. However, due to the nature of the integrand, half
the coefficients are identically zero, recovering an integer-order expansion.

Using Dingle (1973 p 118), we break down the(2, 1) contribution as follows:

L(exp)
ν (k)|(2,1) = − (−)

2ν iν+1/2kν−1/2eikl

2d/2+1/2(2ν)!

(
d − 3

2

)
! + O(kν−3/2). (64)

Again, the factor ofβ in even-d balls can be checked. Comparison with (38) generates
β = 1

2(d−5). In turn this gives a value ofq0 = d−1, the correct (lower rotational) degeneracy
of a 2-bounce orbit in ad-ball.

In even dimensions (where thep = 2µ orbit dominates the Weyl series),α = α(2)0 is given
by the first term of the expansion (64) (cf (38)) and yields

α
(2)
0 = −

25/2−3d/2i3d

π(d − 2)!

(
d − 3

2

)
! (65)

which again agrees with the numerical prediction in section 3. The higher-order corrections can
then be found relative to this leading term by summing the the relevant terms and comparison
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with (38). In four dimensions,

α
(2)
0 = −

1

16
√

2π
α
(2)
1 =

33

512
√

2π

α
(2)
2 =

1143

32 768
√

2π
α
(2)
3 =

67 755

1048 576
√

2π
.

(66)

In two dimensions, we have

α
(2)
0 =

2√
2π

α
(2)
1 = −

21

16
√

2π

α
(2)
2 = −

415

1024
√

2π
α
(2)
3 = −

28 079

32 768
√

2π
.

(67)

The results (63), (66) and (67) are the exact values quoted in the Neville tables. The
consistency of the exact and estimated values is dictated by the proximity of the next-longest
to the dominant orbit (HT): this difference is smaller ford odd than ford even by a factor of
2.6, so the agreement is better in even dimensions. Note that since theseα

(j)

k arise explicitly
from the periodic orbit corrections ofg(s) and are consistent with numerical asymptotics of
the cr , we may conclude that, in this case,α(j)k = c

(j)

k , thus confirming the resurgence link
between the periodic orbit and Weyl terms.

5. Explanation of vanishing 2-bounce orbit in odd dimensions

We aim to understand why the 2-bounce orbit does not appear in the Weyl series for odd-d

spheres, even though it has to appear in the periodic orbit. There are at least two approaches
to understanding this phenomenon.

First, a more detailed analysis of the individual late-term behaviour of the Debye
expansions (Abramowitz and Stegun 1972 section 9.3) is a model exercise for hyperasymptotic
methods (Berry and Howls 1991) using contour integral representations of the Bessel functions
in the ratio of (15). However, the ratio and additional algebraic contributions from the
higher harmonics in (31) dramatically complicate and obfuscate the analysis†. Indeed a more
complete explanation of the late terms both of the Weyl series and the periodic orbit corrections
(section 6) would come with the rigorous application of the theory of resurgence as developed
in Ecalle (1981, 1984) and Voros (1983, 1992). An attempt towards this forms the bulk of
Howls and Trasler (1999).

For now, we exploit an understanding of the structure of asymptotic expansions given by
Berry and Howls (1991), Howls (1992), Olde Daalhuis (1997), Howls (1997). Balian and
Bloch (1972) reduced the analytic behaviour of spectral functions to a determination of the
singularity structure of an associated complex length3 plane. In the notation of Voros (1983),
Olde Daalhuis (1997), Howls (1997) this is the Borel plane, with3 the Laplace-dual variable
of the energys. The resolvent can be represented formally in (for example)d = 3 as the
following integral

g(s) = s|�|
4π
− 1

2π

∞∑
p=1

∫
Cp

d3Gp(3)e
−s3 (68)

† It is easy to show that

ym(s) = I ′m(s)
Im(s)

satisfies y′m(s) = 1 +
m2

s2
− y2

m(s)−
ym(s)

s

a nonlinear Ricatti equation (Bender and Orszag 1978 section 1.6). The indexmmust be scaled withs, so a more elegant
and precise late-term analysis would involve hyperasymptotic methods for nonlinear partial differential equations
which is in the process of being developed (Olde Daalhuis 1998).
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Figure 4. The contour (black line) around the Weyl singularity at the origin of thelength planeis
deformed outwards, giving the Weyl series instead as a sum over thedoubly-infinitecontours (grey
lines) around adjacent singularities. Broken lines denote branch cuts.

whereGp is the ‘path generating function’ for thep-bounce orbits andCp is an associated the
contour of integration (Balian and Bloch 1972). Eachp-integral generates a contribution to the
Weyl series from an integral about3 = 0. Periodic orbits contribute singularities of known type
to eachGp elsewhere in the3-plane. Hyperasymptotic techniques (Berry and Howls 1991,
Howls 1992, Howls 1997) show that the contributions to late terms of integral expansions
arise fromdoubly-infinitecontours over self-similar integrands around such distant adjacent
singularities. The contour encircling the distant singularity corresponding to thep = 2,µ = 1
orbit which is responsible for generating the contribution to the late terms of the Weyl series
is shown in figure 4 (note that this analysis is only accurate up to the whispering-gallery
mode contribution at O(e−Re(2πs)), which is sufficient for our purposes). This technique is an
evolution of the work of Ecalle (1981, 1984), Voros (1983, 1992) and is explained further in
Trasler (1998) and Howls and Trasler (1999), drawing on the work of Delabaere and Howls
(1999).

In the originalm and s variables of this paper, the contribution of thep = 2, µ = 1
orbit to thecr in d = 2(ν + 1) dimensions is composed of the integrand of the periodic orbit
correction (46) together with other integrands effectively differing only by powers ofm2, (18)–
(20). However, them-image of the contour is over adoubly-infinite range. This is the crucial
point because, if and only ifp = 2µ the integrand is then either even or odd, the parity being
determined by the power of the algebraicm-dependence. Consequently in odd dimensions (ν

half-integer) the integral over the doubly-infinite range identically vanishes. Thus there is no
contribution to the late terms of the Weyl series fromp = 2µ orbits in odd dimensions. In
even dimensions withp = 2µ there is no such cancellation and so the shortest,p = 2,µ = 1
orbit dominates thecr . Note that over a half-range in any dimension the integral (46) does not
vanish, and so contributes the correct expansion forp = 2µ to the periodic orbit corrections.

6. Late terms of periodic orbit expansions

We can use the results of section 4 to make further conjectures concerning late terms of the
high-energy expansions, but now on the periodic orbit correctionsc

(j)
r . A study of the late
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Figure 5. The contours of the real part of the exponent in (48) withp = 3,µ = 1 and the contour
of integration (full curve) superimposed.

terms in the expansion of integrals such as (46) is required. Without loss of generality we pick
thep = 3,µ = 1 orbit as an example. This orbit dominates the late terms of the Weyl series
in odd dimensions, but do the early terms of the Weyl series (cr ) somehow dominate the late
terms of the periodic orbit expansions(c(j)r )? This question can be answered by consideration
of the topography of the exponent in (46), together with the singularity structure of the integral.

Using the scalingkv = m, in figure 5 we plot the real and imaginary parts of the exponent

i(h(v)− h|saddle) with h(v) = 2pψ(v) + 2πkvµ, (p, µ) = (3, 1)

in thev-plane to obtain the contours of steepest descent. The dark-grey shading corresponds
to ‘valleys’, light to ‘hills’.

The steepest contour runs from the origin into the valley in the southwest, returning heading
northeast through the saddle atv = 1

2 and into the valley beyond. This picture is repeated for
generalp > 2.

In the hyperspheres, each(p, µ) integral has only one saddle. Whenp > 3, the origin is
a linear endpoint and so it will not contribute to any re-expansion about the saddle atv 6= 0
(Howls 1992). (It will make a small correction at the first stage, from the contour leaving the
origin in figure 5 and to compensate in (48) for our extending the integral out to infinity in
both directions. However, this is unimportant for what is being discussed here.)

Thus from the work of Howls (1997) and the earlier discussion of section 4 the only other
causes of the ultimate divergence of the largek expansion are the branch points of the square
root in the algebraic prefactor of (46), atv = ±1. (Repeat orbits and hence images of the
saddle atv = 1

2 are not involved because the integrals are segregated with respect to bothp

andµ (cf section 5). Therefore the individual(p, µ) integrals do not ‘see’ each other directly.)
Each of the integrals under study are similar to those considered by Berry and Howls (1991)

and Howls (1992, 1997). Thus from above we can deduce that each of their contributions to
the late termsc(j)r will diverge as a factorial over a power of the difference in the exponent
between the saddlepoint and the branch point. Evaluating the exponent at the branch point we
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obtain

2iψ(k,m)p + 2π imµ = − iπp

2
+ ik ×

{
2πµ m = +k

2π(p − µ) m = −k. (69)

On removing the phase factor which is independent ofk we are left with multiples of the length
of whispering-gallery modes in thed-balls. For the orbit under consideration to be physical,
we must havep > 2µ: it then has lengthl given by (57). Under this condition, the second
choice in (69) is either coincident with or lies to the right of the first (on the positive-real axis)
in the length plane, which in turn is to the right of the image of the (sole) saddle. Thus the
first choice is closest to the orbit in question: the dominating factor in the late-term behaviour
is the distance of the orbit length from the whispering-gallery mode with the same numberµ

of turns about the origin.
Consequently we can adapt the general conjecture (3) on the oscillatory part of the level

density for the hyperspheres. Given the form (2), we predict that

c(j)r ∼
α(r + β)!

(wj − lj )r r →∞. (70)

Herewj is the length of the shortest (i.e. of all integer multiples) whispering-gallery mode
longer thanlj . In the (resurgent) corrections of the second iteration, the late terms behave as
a factorial over thedifferencebetween the lengths of orbit and the next-longest whispering-
gallery mode. That thec(j)r in billiard systems depend on the difference between orbit lengths is
consistent with the findings of Boasman and Keating (1995) who considered quantum maps†.

7. Discussion and conclusions

We have demonstrated that the extended conjecture (4) suggested in HT for high orders of Weyl
series for 2D billiards can hold in higher dimensions. However, even the most geometrically
‘simple’ billiards can spring surprises.

In HT the highcr were expanded directly to observe the predicted form, but the higher-
order corrections in (4) were not linked explicitly to the low orders of the periodic orbit
correctionsc(p)j,r . Here we have derived the low orders of the periodic orbit correctionsc

(p)

j,r and
hence demonstrated the resurgence relation directly.

Using an extension of Stewartson and Waechter’s (1971) and Kennedy’s (1979) methods,
we have been able to conjecture the leading asymptotic behaviour of thecr in any dimension.
This partially refutes one of the criticisms which were levelled by Levitin (1998) who claimed
that knowledge of these methods in a particular dimension did not necessarily generate
information about thecr in another. It is clear that only the parity of the dimension is important,
and knowledge of the first few dimensions is sufficient to conjecture the dominant asymptotic
behaviour of the rest.

The absence of influence on thecr by the shortest orbit in odd-d balls at the asymptotic
level of (4) is for a different reason to the cases considered by BH. There the billiards where
the shortest orbit failed to dominate were concave, and an explanation was provided which
depended on the topography of the chord-length surface. The argument was reminiscent of
theadjacencyrules concerning contributions from distant critical points to integrals outlined
by Berry and Howls (1991), Howls (1992) and Howls (1997). Here the vanishing of the 2-
bounce in odd-dimensional Weyl terms is almost ‘accidental’, relying on a precise, sensitive,

† These results are also relevant to the circle billiard since the only difference due to dimensionality is the absence
of a finite endpoint on the contour. The singularity structure which generates the whispering-gallery contributions is
common to all dimensions.
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symmetry property of an integrand. For that reason we suspect that a general slight perturbation
in the boundary of the odd-d ball would lead to billiards where the shortest orbit would again
dominate thecr . This idea is examined further for 3D bodies of revolution in Howls and Trasler
(1999).

It should be recalled that as a result of a different degeneracy the 2-bounce orbits have
smaller amplitudes in the periodic orbit correction terms (for the spectral density) than the
regular polygons ind > 3 (Balian and Bloch (1972) cf section 4). Thus the influence of the
2-bounce orbit in the fluctuations about the Weyl series is diminished in higher dimensions. It
is interesting to contrast this behaviour with the role this orbit has in the Weyl series itself: the
2-bounce orbit either dominates or is completely absent, depending only on dimensional parity.
An explanation of this in terms of orthogonal groups with even or odd Cartan classification
also seems desireable, but is beyond the scope of this initial, more exploratory article.

The argument explaining the absence of influence of the 2-bounce on thecr , but the
contribution of the same orbit to the periodic orbit corrections is a subtle application of
hyperasymptotic techniques. Such ideas underpin the ideas of BH and HT, but necessarily
involve representing the spectral functions as Borel transforms. The work of Balian and Bloch
(1972) coupled with the resurgence approach of Ecalle (1981, 1984), Voros (1983, 1992) and
the results of Howls (1997), Delabaere and Howls (1999) should provide a more complete
analytic explanation of the conjecture (4) in more general billiard systems. This approach will
be outlined elsewhere (Howls and Trasler 1999).

This paper has made great use of saddlepoint techniques and Stokes phenomena. At times
it has led to somewhat untidy, complicated and formal calculations. However, because of the
simplicity of the boundary geometry we hope that others might provide a rigorous proof (or
otherwise) of our conjectures. The method of Bordaget al (1996a, b, c) potentially lends itself
to a more elegant examination of the asymptotic properties of thecr , but the periodic orbits
and consequently any resurgence relations have yet to be teased from that formalism.

Finally other types of boundary conditions on the balls should be examined. Neumann
conditions and annuli are considered in Howls and Trasler (1999).
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